External Validation of a Scale Predictive of Cardiovascular disease mortality in older adults

Authors

Keywords:

heart disease, risk measurement, prediction, elderly, mortality.

Abstract

Introduction: External validation is important in investigations of predictive models and scales. Scales without external validation have limited clinical relevance.

Objective: To evaluate the external validity of a cardiovascular disease mortality scale in older adults.

Methods: The study population consisted of 82 cases and 246 controls. To evaluate the construct validity, it was decided to define the association between the risk categories given by the scale created and the relationship with the condition at discharge. This was evaluated using chi-square and Kendall's Tau for the association of ordinal variables. Criterion validity was assessed by correlating the new scale designed with the EPICARDIAN scale and calculating the Kendall's Tau-b association coefficient and chi-square. Sensitivity, specificity, positive predictive value, negative predictive value, as well as positive and negative likelihood coefficient were determined when applying the scale created to the external validation sample.

Results: The designed scale discriminated better than the EPICARDIAN scale in both sexes; 68.8 % of the deceased in the validation group were classified as high risk.

Conclusions: The external validation of the risk scale showed a high predictive capacity and high prognostic efficiency parameters, which facilitates its acceptance and use to optimize community and individual interventions aimed at older adults in primary health care.

Downloads

Download data is not yet available.

References

Magnussen CH, Ojeda FM, Leong DP, Alegre J, Amouyel Ph, Aviles L. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N Engl J Med. 2023;389:1273-85. DOI: https://doi.org/10.1056/NEJMoa2206916

Peña M, López R. Diseño y validación de una escala de riesgo de parto pretérmino con enfoque periodontal. MEDISAN. 2023 [acceso 26/02/2023];27(4):e4647. Disponible en: https://medisan.sld.cu/index.php/san/article/view/4647

Rodríguez JM. Validación del índice pronóstico de morbimortalidad por enfermedad cardiovascular asociada con factores de riesgo aterogénico. Rev Cub Med Mil. 2021 [acceso 26(03/2023];50(1):e838. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572021000100003&lng=es.

Borja M, Fernández F. Validación interna de modelos predictivos de regresión logística. Comando validation (Stata) [tesis]. Madrid: Universidad Complutense. 2018 [acceso 28/02/2023]. Disponible en: https://docta.ucm.es/rest/api/core/bitstreams/b41cfad7-758c-4be0-bcf6-17a2411a7fb4/content

Rodríguez AA, Murillo AA, Rivera RJ, Montalván EE, Duarte G, Urrutia SA, et al. Validez de los métodos de predicción para riesgo cardiovascular en América Latina: revisión bibliográfica. REV MED HONDUR. 2017 [acceso 28/02/2023];85(1,2):51-5. Disponible en: http://www.bvs.hn/RMH/pdf/2017/pdf/Vol85-1-2-2017-15.pdf

García PJ. Validación externa del modelo predictivo de mortalidad en ancianos con neumonía adquirida en la comunidad. Rev Méd Electrón. 2020 [acceso 26/02/2023];42(6):(aprox. 16p.). Disponible en: http://www.revmedicaelectronica.sld.cu/index.php/rme/article/view/3575/497

Hierrezuelo N, Caballero G, Magdariaga A, Bonal R, Acosta C. Escala predictiva de mortalidad por afección cardiovascular en adultos mayores del municipio de Santiago de Cuba. MEDISAN. 2023 [acceso 26/02/2023];27(4):e4415. Disponible en: https://medisan.sld.cu/index.php/san/article/view/4415

Gabriel R, Muñiz J, Vega S, Moral I, Pérez Castro TR, Rodríguez Salvanés F, et al. Riesgo cardiovascular en la población anciana española. Escala de riesgo EPICARDIAN. Rev Clínica Española. 2022 [acceso 16/04/2023];222(1):13-21. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0014256521001119

Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148(3):839-43. DOI: https://doi.org/10.1148/radiology.148.3.6878708

Schargrodsky H, Hernández R, Champagne B, Honorio RV, Silva LC, Touboul PJ, et al. CARMELA: Assessment of Cardiovascular Risk in Seven Latin American Cities. Am J Med. 2008;121(1):58-65. DOI: https://doi.org/10.1016/j.amjmed.2007.08.038

Muthiah GA, Mensah JVT, Valentin GA. Summary of methods for studying the global burden of disease. J Am Coll Cardiol. 2022;80(25):2372-425. DOI: https://doi.org/0.1016/j.jacc.2022.11.005

López Jaramillo P, Otero J, Rueda Quijano SM, Camacho PA, Rey JJ, Sánchez G, et al. May Measurement Month 2017: an analysis of blood pressure screening results in Colombia-Americas. Eur Heart J. 2019;21(Suppl D):D40-D3. DOI: https://doi.org/10.1093/eurheartj/suz087

Camacho A. Multimorbilidad [Tesis Doctoral]. Colombia: Universidad Nacional de Colombia. 2020 [acceso 26/01/2023]. Disponible en: http://www.acgg.org.co/pdfs_memorias/Multimorbilidad.pdf

D'Ascenzo F, Biondi-Zoccai G, Moretti C, Bollati M, Omedè P, Sciuto F, et al. TIMI, GRACE and alternative risk scores in Acute Coronary Syndromes: a meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients. Contemp Clin Trials. 2012;33(3):507-14. DOI: https://doi.org/10.1016/j.cct.2012.01.001

SCORE2 Working Group. European Society of Cardiology. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021;42(25):2439-54. DOI: https://doi.org/10.1093/eurheartj/ehab309

Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavous M, Stevens G, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7:e1332–e45. DOI: https://doi.org/10.1016/S2214-109X(19)30318-3

SCORE2-OP working group and ESC Cardiovascular risk collaboration. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J. 2021;42(25):2455-67. DOI: https://doi.org/10.1093/eurheartj/ehab312

Neumann JT, Thao LTP, Callander E, Chowdhury E, Williamson JD, Nelson MR, et al. Cardiovascular risk prediction in healthy older people. Geroscience. 2022;44(1):403-13. DOI: https://doi.org/10.1007/s11357-021-00486-z

Pylypchuk R, Wells S, Kerr A, Poppe K, Riddell T, Harwood M, et al. Cardiovascular disease risk prediction equations in 400000 primary care patients in New Zealand: a derivation and validation study. Lancet. 2018;391(10133):1897-907. DOI: https://doi.org/10.1016/S0140-6736(18)30664-0

Stam MC, Visseren FL, Wouter J, Van der Y, Poulter NR, Gupta A, et al. Personalized absolute benefit of statin treatment for primary or secondary prevention of vascular disease in individual elderly patients. Clin Res Cardiol. 2017;106(1):58-68. DOI: https://doi.org/10.1007/s00392-016-1023-8

Bermúdez GJ, Barreto EE, Chaljub E, López Y, Naranjo AM, Rabassa MA, et al. Diseño y validación de la escala pronóstica cubana PREDICMED para estratificar el riesgo de mediastinitis posoperatoria. CorSalud. 2020 [acceso 26/03/2023];12(4):392-401. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/734

Published

2024-04-17

How to Cite

1.
Hierrezuelo Rojas N, Del Rio Caballero G, Hernández Magdariaga A, Borrero Cobas O, Rosell Oliva A. External Validation of a Scale Predictive of Cardiovascular disease mortality in older adults. Rev. cuba. cardiol. cir. cardiovasc. [Internet]. 2024 Apr. 17 [cited 2025 Mar. 10];30:e2270. Available from: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/2270

Issue

Section

Original Articles