Efectos del entrenamiento de fuerza sobre la variabilidad de la frecuencia cardíaca en hipertensos: revisión bibliográfica

Luis Benavides, Eduardo Guzmán-Muñoz, Antonio Roberto Zamuner, Pedro Pugliesi-Abdala, Miguel Alarcón

Texto completo:

PDF

Resumen

Introducción: La variabilidad de la frecuencia cardíaca es entendida como la variación de tiempo, entre los intervalos de las ondas R del electrocardiograma, y permite representar el funcionamiento del organismo ante determinados estímulos. A partir de esto, resulta relevante entender los efectos del entrenamiento de la fuerza sobre los parámetros del sistema cardiovascular, ya que se generan controversias en torno a la fisiología cardíaca, más aún, en personas con patología hipertensiva.

Objetivo: Identificar los efectos del entrenamiento de fuerza sobre la variabilidad de la frecuencia cardíaca en hipertensos.

Métodos: Se realizó una revisión bibliográfica de las principales bases de datos Ebsco Host, Web of Science, Healt Medical Collection, Scopus y Medline, para identificar los artículos experimentales que se encontraban en los últimos 10 años. Se obtuvo 11 artículos, a partir de la combinación de las palabras clave: variabilidad de la frecuencia cardíaca, entrenamiento de fuerza e hipertensión.

Resultados: Las investigaciones recolectadas hacen alusión a los cambios en las variables frecuenciales y temporales de la variabilidad de la frecuencia cardíaca, a través del entrenamiento de fuerza. Principalmente con los efectos agudos, aumenta la LF y disminuye la HF; mientras que, con los efectos crónicos, descienden los valores de LF y la relación LF/HF.

Conclusiones: Los datos del presente estudio reportan alteraciones de los parámetros de VFC con estímulos de fuerza en personas con hipertensión.

Palabras clave

entrenamiento de fuerza; variabilidad; frecuencia cardíaca; hipertensión.

Referencias

Calderón FJ, Cupeiro R, Peinado A, Lorenzo-Capella I. Variabilidad de la frecuencia cardíaca y ejercicio ¿Fundamentación fisiológica? Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte. 2020;20(78):299-320. DOI: https://doi.org/10.15366/rimcafd2020.78.008.

Lakusic N, Mahovic D, Kruzliak P, Cerkez-Habek J, Novak M, Cerovec D. Changes in Heart Rate Variability after Coronary Artery Bypass Grafting and Clinical Importance of These Findings. BioMed Research International. 2015;1–7. DOI: https://doi.org/10.1155/2015/680515.

Wulsin L, Horn P, Perry J, Massaro J, D’Agostino R. Autonomic Imbalance as a Predictor of Metabolic Risks, Cardiovascular Disease, Diabetes, and Mortality Autonomic Imbalance Predicts CVD, DM, Mortality. The Journal of Clinical Endocrinology & Metabolism. 2015;100(6):2443-8. DOI: https://doi.org/10.1210/jc.2015-1748.

Veloza L, Jiménez C, Quiñones D, Polanía F, Pachón-Valero L, Rodríguez-Triviño Y. Variabilidad de la frecuencia cardíaca como factor predictor de las enfermedades cardiovasculares. Revista Colombiana de Cardiología. 2019;26(4):205-10. DOI: https://doi.org/10.1016/j.rccar.2019.01.006.

Ewen S, Ukena C, Böhm M. Percutaneous Renal Denervation: new treatment option for resistant hypertension and more? Hypertension. 2013;99:1129-34. DOI: https://dx.doi.org/10.1136/heartjnl-2012-301725.

Forechi L, Mill JG, Griep RH, Santos I, Pitanga F & Molina, MDC. Adherence to physical activity in adults with chronic diseases: ELSA-Brasil. Revista de saude publica. 2018;52:31. DOI: https://doi.org/10.11606/S1518-8787.2018052000215.

Gambardella J, Morelli M, Wang X, Santulli G. Pathophysiological mechanisms underlying the beneficial effects of physical activity in hypertension. Journal of clinical hypertension Greenwich, Conn. 2020;22(2):291. DOI: https://doi.org.org/10.1111/jch.13804

Masroor S, Bhati P, Verma S, Khan M, Hussain ME. Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: A randomized control trial. Indian heart journal. 2018;70:28-35. DOI: https://doi.og/10.1016/j.ihj.2018.03.005

Tebar WR, Rufino JC, Cruz Veras AS, Correia RR & Teixeira G R. Strength training for arterial hypertension treatment: a systematic review protocol. Physical Therapy Reviews. 2021;26(3):235-241. DOI: https://doi.org/10.1080/10833196.2021.1894803.

Anunciação PG, Farinatti PT, Goessler KF, Casonatto J, Polito MD. Blood pressure and autonomic responses following isolated and combined aerobic and resistance exercise in hypertensive older women. Clinical and experimental hypertension. 2016;38(8):710-4. DOI: https://doi.org/10.1080/10641963.2016.1200601.

Figueiredo T, Willardson J, Miranda H, Bentes C, Reis V, Simão R. Influence of load intensity on postexercise hypotension and heart rate variability after a strength training session. The Journal of Strength & Conditioning Research. 2015;29(10):2941-8. DOI: https://doi.org/10.1519/JSC.0000000000000954.

Michael S, Graham K, Davis G. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Frontiers in physiology. 2017;8:301. DOI: https://doi.org/10.3389/fphys.2017.00301.

Gourine A, Ackland G. Cardiac vagus and exercise. Physiology. 2019;34(1):71-80. DOI: https://doi.org/10.1152/physiol.00041.2018.

Fadel P. Reflex control of the circulation during exercise. Scandinavian journal of medicine science in sports. 2015;25:74-82. DOI: https://doi.org/10.1152/jappl.1990.69.2.407.

Landa-Ramírez E, de Jesús Arredondo-Pantaleón A. Herramienta PICO para la formulación y búsqueda de preguntas clínicamente relevantes en la psicooncología basada en la evidencia. Psicooncología. 2014;11(2):259-70. DOI: https://doi.org/10.5209/rev_PSIC.2014.v11.

Rodríguez-Núñez I, Rodríguez-Romero N, Álvarez A, Zambrano L, da Veiga GL & Romero F. Variabilidad del ritmo cardíaco en pediatría: aspectos metodológicos y aplicaciones clínicas. Archivos de Cardiología de México. 2021:1-9. DOI: https://doi.org/10.24875/ACM.20000473

García R, De Abreu KG. Comportamiento de la frecuencia cardíaca en Test Progresivos: algunas variables a considerar. Educación física Chile. 2009;(268):63-9.

Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation. 2000;101:8-10. DOI: https://doi.org/10.1161/01 .

Tegegne BS, Man T, van Roon AM, Riese H, Snieder H. Determinants of heart rate variability in the general population: The Lifelines Cohort Study. Heart Rhythm. 2018;15(10):1552-8. DOI: https://doi.org/10.1016/j.hrthm.2018.05.006.

Márquez J, Garrido R, Chaves G, Mendo A. Variabilidad de la frecuencia cardíaca: investigación y aplicaciones prácticas para el control de los procesos adaptativos en el deporte. Revista iberoamericana de psicología del ejercicio y el deporte. 2018[acceso 21/12/21];13(1):121-30. Disponible en: https://www.redalyc.org/articulo.oa?id=311153534012.

Singh N, Moneghetti KJ, Christle JW, Hadley D, Froelicher V & Plews D. Heart rate variability: an old metric with new meaning in the era of using mhealth technologies for health and exercise training guidance. part two: prognosis and training. Arrhythmia & electrophysiology review. 2018;7(4):247-55. DOI: https://doi.org/10.15420/aer.2018.30.2.

White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. The Journal of Physiology. 2014;592(12):2491–500. DOI: https://doi.org/10.1113/jphysiol.2014.271858

Grässler B, Thielmann B, Böckelmann I & Hökelmann A. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: A systematic review. Frontiers in physiology. 2021;12:1-22. DOI: https://doi.org/10.3389/fphys.2021.657274

Droguett VSL, Santos AC, Medeiros CE, Marques DP, Nascimento LS, Brasileiro-Santos MS. Cardiac autonomic modulation in healthy el Derly after different intensities of dynamic exercise. Clin Interv Aging. 2015;10:203-8. DOI: https://doi.org/10.2147/CIA.S62346.

Gauche R, Lima RM, Myers J, Gadelha AB, Neri SG, Forjaz CL, et al. Blood pressure reactivity to mental stress is attenuated following resistance exercise in older hypertensive women. Clinical Interventions in Aging. 2017;12:793. DOI: https://doi.org/10.2147/CIA.S130787.

Porras-Alvarez J, Bernal-Calderón MO. Variabilidad de la frecuencia cardíaca: evaluación del entrenamiento deportivo. Revisión de tema. Duazary.2019;16(2):259-69. DOI: https://doi.org/10.21676/2389783X.2750.

García-Manso JM. Aplicación de la variabilidad de la frecuencia cardíaca al control del entrenamiento deportivo: análisis en modo frecuencia. Arch. de med. Deporte. 2013[acceso 15/10/2021];30(1):43-51. Disponoble en: https://hdl.handle.net/10553/75650.

Rodas G, Pedret-Carballido C, Ramos J, Capdevila L. Variabilidad de la frecuencia cardíaca: Concepto, medidas y relación con aspectos clínicos (I). Arch. med. Deporte. 2008[acceso 15/10/2021];123(25):41-7. Disponible en: https://www.researchgate.net/publication/46727114.

Domínguez AB. Respuesta autónoma y su incidencia con el indicador de aptitud física, variabilidad de la frecuencia cardíaca y el VO2 Max en nadadores jóvenes sanos. Revista Científica Conecta Libertad. 2020[acceso 15/10/2021];4(1):60-74. Disponible en: http://revistaitsl.itslibertad.edu.ec/index.php/ITSL/article/view/117/326.

Raffin J, Barthélémy JC, Dupré C, Pichot V, Berger M, Féasson, L, et al. Exercise frequency determines heart rate variability gains in older people: a meta-analysis and meta-regression. Sports Medicine. 2019;49(5):719-29. DOI: https://doi.org/10.1007/s40279-019-01097-7.

Fisher JP. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents. Experimental Physiology. 2013;99(2):300–5. DOI: https://doi.org/10.1113/expphysiol.2013.074377.

Michelini LC, O'Leary DS, Raven PB, Nóbrega AC. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. American Journal of Physiology. Heart and circulatory physiology. 2015;309(3):381–92. DOI: https://doi.org/10.1152/ajpheart.00077.2015.

Fernández VA, Vargas SC, Rodríguez S, Umaña D, Ramírez A. Variabilidad de la frecuencia cardíaca como indicador de la actividad del sistema nervioso autónomo: implicaciones en el ejercicio y patologías. Revista Médica de la Universidad de Costa Rica. 2017[acceso 15/10/2021];11(1):48-64. Recuperado de: https://revistas.ucr.ac.cr/index.php/medica/article/view/30490/30415.

Nunes JHC, Locatelli JC, Reck HB, Porto FE, Neto AF & Lopes WA. Cardiac autonomic control following resistance exercise with different set configurations in apparently healthy young men: A crossover study. Physiology & Behavior. 2021;230:1-15. DOI: https://doi.org/10.16/j.physbeh.2020.113292.

Barrero A, Schnell F, Carrault G, Kervio G, Matelot D, Carré F, et al. Daily fatigue-recovery balance monitoring with heart rate variability in well-trained female cyclists on the Tour de France circuit. PLoS One. 2019;14(3): 1-13. DOI: https://doi.org/10.1371/journal.pone.0213472.

Prasertsri P, Phoemsapthawee J, Kuamsub S, Poolpol K & Boonla O. Effects of Long-Term Regular Continuous and Intermittent Walking on Oxidative Stress, Metabolic Profile, Heart Rate Variability, and Blood Pressure in Older Adults with Hypertension. Journal of Environmental and Public Health, 2022:1-12. DOI: https://doi.org/10.1155/2022/5942947.

Taskin BS, Taskin M, Taskin M & Taskin, H. Examination of heart rate variability in young swimmers. Medicina dello Sport, 2021;74(1):66-74. DOI: https://doi.org/10.23736/S0025-7826.21.03595-X.

Karapetian GK, Engels H, Gretebeck K, Gretebeck R. Effect of Caffeine on LT, VT and HRVT. Int. J. Sports Med. 2012;33:507–513. DOI: https://doi.org/10.1055/s-0032-1301904.

Fisher J, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Comprehensive Physiology. 2011;5(2):475-512. DOI: https://doi.org/10.1002/cphy.c140022.

Leicht AS, Sinclair WH, Spinks WL. Effect of exercise mode on heart rate variability during steady state exercise. Eur. J. Appl. Physiol. 2008;102:195–204. DOI: https://doi.org/10.1007/s00421-007-0574-9.

Cunha FA, Midgley AW, Goncalves T, Soares P, Farinatti P. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. SpringerPlus. 2015;4:100. DOI: https://doi.org/10.1186/s40064-015-0882-.

Nunes JHC, Locatelli JC, Reck HB, Porto FE, Neto AF & Lopes WA. Cardiac autonomic control following resistance exercise with different set configurations in apparently healthy young men: A crossover study. Physiology & Behavior, 2021;230:1-15. DOI: https://doi.org/10.1016/j.physbeh.2020.113292.

Bhati P, Moiz JA, Menon GR & Hussain ME. Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clin Auton Res. 2019;29: 75– 103. DOI: https://doi.org/10.1007/s10286-018-0558-3.

Queiroz A, Sousa J, Cavalli A, Silva J, Costa L, Tobaldini E, et al. Post‐resistance exercise hemodynamic and autonomic responses: Comparison between normotensive and hypertensive men. Scandinavian journal of medicine science in sports. 2015;25(4):486-94. DOI: https://doi.org/10.1111/s,s.12280.

Trevizani GA, Seixas MB, Benchimol-Barbosa PR, Vianna JM, da Silva LP, Nadal J. Effect of resistance training on blood pressure and autonomic responses in treated hypertensives. The Journal of Strength Conditioning Research. 2018;32(5):1462-70. DOI: https://doi.org/10.1519/JSC.0000000000001995.

Vale A, Carneiro J, Jardim P, Jardim TV, Steele J, Fisher JP, et al. Acute effects of different resistance training loads on cardiac autonomic modulation in hypertensive postmenopausal women. Journal of translational medicine. 2018;16(1):1-9. DOI: https://doi.org/10.1186/s12967-018-1615-3.

De Freitas MC, Ricci-Vitor AL, Quizzini GH, de Oliveira J, Vanderlei L, Lira FS, et al. Postexercise hypotension and autonomic modulation response after full versus split body resistance exercise in trained men. Journal of exercise rehabilitation. 2018;14(3):399. DOI: https://doi.org/10.12965/jer.1836136.068.

Farinatti P, da Silva Itaborahy A, de Paula T, Monteiro WD & Neves M. F. Effects of aerobic, resistance and concurrent exercise on pulse wave reflection and autonomic modulation in men with elevated blood pressure. Scientific Reports, 2021;11(1):1-12. DOI: https://doi.org/10.1038/s41598-020-80800-5.

Simões RP, Mendes RG, Castello-Simões V, Catai AM, Arena R, Borghi-Silva A. Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. Journal of sports science medicine. 2016[acceso 15/10/2021];15(4):649. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131219/pdf/jssm-15649.pdf.

Farah BQ, Rodrigues SLC, Silva GO, Pedrosa RP, Correia MA, Barros MVG, et al. Supervised, but Not Home-Based, Isometric Training Improves Brachial and Central Blood Pressure in Medicated Hypertensive Patients: A Randomized Controlled Trial. Front. Physiol. 2018;9:961. DOI: https://doi.org/12.3389/fphys.2018.00961.

Oliveira-Dantas FF, do Socorro Brasileiro-Santos M, Thomas SG, Silva AS, Silva DC, Browne RA, et al. Short-term resistance training improves cardiac autonomic modulation and blood pressure in hypertensive older women: a randomized controlled trial. The Journal of Strength & Conditioning Research. 2020:34(1),37-45. DOI: https://doi.org/10.1519/JSC.0000000000003182.

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2022 Luis Benavides, Eduardo Guzmán-Muñoz, Antonio Roberto Zamuner, Pedro Pugliesi-Abdala, Miguel Alarcón

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.