Bile acids and the heart: current evidence

Authors

  • Felipe Neri Piñol Jimènez Centro Nacional de Cirugía de Mínimo Acceso. La Habana, Cuba https://orcid.org/0000-0003-0522-8875
  • Virginia de los Ángeles Capo de Paz Instituto de Medicina Tropical Pedro Kourí. La Habana, Cuba.
  • Teresita Monteros González Hospital Militar Central Luis Díaz Soto. La Habana, Cuba.
  • Hilev de las Mercedes Larrondo Muguercia Hospital Clínico-Quirúrgico Hermanos Ameijeiras. La Habana, Cuba.
  • Néstor Emilio Clavería Centurión Policlínico Universitario Héroes del Moncada. La Habana, Cuba.

Keywords:

bile acids, heart, sudden death

Abstract

Introduction: New evidence reveals the regulatory actions of bile acids as signaling molecules that benefit the balance of cardiac hemodynamics, but whose cardiotoxic effects, associated with comorbidities, cause arrhythmias, atrioventricular block, cardiac arrest and sudden death.

Objective: To present the molecular foundations that allow bile acids to be recognized as cardiotoxic agents.

Methods: A systematic review was carried out between 1939 and 2023, in PubMed, SciELO, Lilacs and Elservier of the reports about the molecular mechanisms that could constitute the theoretical foundation of the cardiotoxic effects of bile acids on myocytes. Likewise, the imbalance of the microbiota-hepatobiliary-intestinal-brain axis that leads to disorders of cardiac hemodynamics and sudden death.

Results: The molecular mechanisms that could underlie the link between the cardiotoxic effects of bile acids, dysbiosis, disorders of cardiac dynamics and sudden death are described.

Conclusion: The biomolecular foundations that recognize bile acids as cardiotoxic agents are identified and scientifically support the importance of these molecules in the diagnosis, prognosis and therapeutics of sudden death and cardiovascular diseases.

Downloads

Download data is not yet available.

Author Biographies

Felipe Neri Piñol Jimènez, Centro Nacional de Cirugía de Mínimo Acceso. La Habana, Cuba

Especialista de Segundo Grado en Gastroenterología. Doctor en Ciencias.  Profesor e Investigador Titular. Máster en Enfermedades Infecciosas. Miembro Titular de la Sociedad Cubana de Gastroenterología. Jefe del Grupo Nacional de la Especialidad de Gastroenterología.

Teresita Monteros González, Hospital Militar Central Luis Díaz Soto. La Habana, Cuba.

Doctor en Ciencias. Especialista de II Grado en Anatomía Patológica. Profesor e Investigador Auxiliar.

Hilev de las Mercedes Larrondo Muguercia, Hospital Clínico-Quirúrgico Hermanos Ameijeiras. La Habana, Cuba.

Especialista de II Grado en Medicina Intensiva. Profesor e Investigador Auxiliar

Néstor Emilio Clavería Centurión, Policlínico Universitario Héroes del Moncada. La Habana, Cuba.

Especialista de I Grado en Medicina General Integral, Máster en Urgencia y Emergencia Médica en Atención Primaria de Salud. Profesor Auxiliar e Investigador Agregado.

References

Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553-95. DOI: https://www.doi.org/10.1194/jlr.R049437

Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev. 2021;101(2):683-731. DOI: https://www.doi.org/10.1152/physrev.00049.2019

Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci. 2011;4(3):210-8. DOI: https://www.doi.org/10.1111/j.1752-8062.201100272.x

Desai MS, Penny DJ. Bile acids induce arrhythmias: old metabolite, new tricks. Heart. 2013;99(22):1629-30. DOI: https://www.doi.org/10.1136/heartjnl-2013-304546

Yan JJ, Fan HQ, Yang L. Bile acids in arrhythmia. Zhonghua Gan Zang Bing Za Zhi. 2020;28(4):361-4. DOI: https://www.doi.org/10.3760/cma.j.cn501113-20190308-00074

Vasavan T, Deepak S, Jayawardane IA, Lucchini M, Martin C, Geenes V, Yang J, et al. Fetal cardiac dysfunction in intrahepatic cholestasis of pregnancy is associated with elevated serum bile acid concentrations. J Hepatol. 2021;74(5):1087-96. DOI: https://www.doi.org/10.1016/j.jhep.202011038

Guizoni DM, Vettorazzi JF, Carneiro EM, Davel AP. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids. Nitric Oxide. 2020;94:48-53. DOI: https://www.doi.org/10.1016/j.niox.201910.008

Joyce SA, Gahan CG. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig Dis. 2017;35(3):169-77. DOI: https://www.doi.org/10.1159/000450907

Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, et al. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases. 2021;9(2):308-20. DOI: https://www.doi.org/10.12998/wjcc.v9.i2.308

Desai MS, Mathur B, Eblimit Z, Vasquez H, Taegtmeyer H, Karpen SJ, et al. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology. 2017;65(1):189-201. DOI: https://www.doi.org/10.1002/hep.28890

Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome-a potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021;152:105-117. DOI: https://www.doi.org/10.1016/j.yjmcc.202012001

Piñol Jiménez FN, Capó de Paz VA, Ruiz Torres JF, Martínez Alfonso MA, Arencibia Flores LG, García Santos RO, et al. Ácidos biliares. Evidencias actuales. La Habana: Editorial Ciencias Médicas; 2023. Disponible en: http://www.bvscuba.sld.cu/libro/ácidos-biliares-evidencias-actuales/

Vítek L. Bile acids in the treatment of cardiometabolic diseases. Ann Hepatol. 2017;16 (sup)1:S43-52. DOI: https://www.doi.org/10.5604/01.3001.0010.5496

Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020;2020:5394096. DOI: https://www.doi.org/10.1155/2020/5394096

Nitsa A, Toutouza M, Machairas N, Mariolis A, Philippou A, Koutsilieris M. Vitamin D in cardiovascular disease. In Vivo. 2018.;32(5):977-81. DOI: https://www.doi.org/10.21873/invivo.11338

Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, et al. Metabolite G-protein coupled receptors in cardio-metabolic diseases. Cells. 2021;10(12):3347. DOI: https://www.doi.org/10.3390/cells10123347

Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta. 2013;1831(1):203-12. DOI: https://www.doi.org/10.1016/j.bbalip.201206.006

Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, et al. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 2018;50(1):1-9. DOI: https://www.doi.org/10.1152/physiolgenomics.00062.2017

Szteyn K, Singh H. BKCa channels as targets for cardioprotection. Antioxidants (Basel). 2020;9(8):760. DOI: https://www.doi.org/10.3390/antiox9080760

Chen Y, Zhou MM, Gao ZJ, He YL. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases. 2021;9(2):308-20. DOI: https://www.doi.org/10.12998/wjcc.v9.i2.308

Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, et al. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res. 2018;114(10):1335-49. DOI: https://www.doi.org/10.1093/cvr/cvy093

Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, Adorini L, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462. DOI: https://www.doi.org/10.1111/1755-5922.12462

Di Lorenzo A. Sphingosine-1-phosphate receptor-1 (S1PR1) signalling: the homeostatic pathway of the heart. Cardiovasc Res. 2021;117(2):357-9. DOI: https://www.doi.org/10.1093/cvr/cvaa224

Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C. Heart and bile acids–clinical consequences of altered bile acid metabolism. BBA- 1864. 2018;1345-55. DOI: https://www.doi.org/10.1016/j.bbadis.201712.039

Pironi L, Sasdelli AS. Intestinal failure-associated liver disease. Clin Liver Dis. 2019;23(2):279-91. DOI: https://www.doi.org/10.1016/j.cld.2018.12.009

Bauer M. The liver-gut-axis: initiator and responder to sepsis. Curr Opin Crit Care. 2022;28(2):216-20. DOI: https://www.doi.org/10.1097/MCC.0000000000000921

Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M. Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev. 2020:5394096. DOI: https://www.doi.org/10.1155/2020/5394096

Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent advances in microbiota-associated metabolites in heart failure. Biomedicines. 2023;11(8):2313. DOI: https://www.doi.org/10.3390/biomedicines11082313

Corriero A, Gadaleta RM, Puntillo F, Inchingolo F, Moschetta A, Brienza N. The central role of the gut in intensive care. Crit Care. 2022;26(1):379. DOI: https://www.doi.org/10.1186/s13054-022-04259-8

Wiese S, Danielsen KV, Busk T, Hove JD, Ytting H, Hansen SH, et al. Altered serum bile acid composition is associated with cardiac dysfunction in cirrhosis. Aliment Pharmacol Ther. 2023;58(4):453-62. DOI: https://www.doi.org/10.1111/apt.17533

Pilipović A, Mitrović D, Obradović S, Poša M. Docking-based analysis and modeling of the activity of bile acids and their synthetic analogues on large conductance Ca2+ activated K channels in smooth muscle cells. Eur Rev Med Pharmacol Sci. 2021;25(23):7501-07. DOI: https://www.doi.org/10.26355/eurrev_202112_27449

Gao J, Yuan G, Xu Z, Lan L, Xin W. Chenodeoxycholic and deoxycholic acids induced positive inotropic and negative chronotropic effects on rat heart. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(4):765-73. DOI: https://www.doiorg/10.1007/s00210-020-01962-7

Shi M, Wei J, Yuan H, Li Y, Guo Z. The role of the gut microbiota and bile acids in heart failure: A review. Medicine (Baltimore). 2023;102(45):e35795. DOI: https://www.doiorg/10.1097/MD.0000000000035795

Ohlrogge AH, Brederecke J, Ojeda FM, Pecha S, Börschel CS, Conradi L, et al. The relationship between vitamin D and postoperative atrial fibrillation: a prospective cohort study. Front Nutr. 2022;9:851005. DOI: https://www.doi.org/10.3389/fnut.2022851005

Dziedzic EA, Gąsior JS, Tuzimek A, Dąbrowski M, Jankowski P. The association between serum vitamin D concentration and new inflammatory biomarkers-systemic inflammatory index (SII) and systemic inflammatory response (SIRI)-in patients with ischemic heart disease. Nutrients. 2022;14(19):4212. DOI: https://www.doi.org/10.3390/nu14194212

Barsan M, Brata AM, Ismaiel A, Dumitrascu DI, Badulescu AV, Duse TA, et al. The pathogenesis of cardiac arrhythmias in vitamin D deficiency. Biomedicines. 2022;10(6):1239. DOI: https://www.doi.org/10.3390/biomedicines10061239

Rodríguez M, Bombin M, Ahumada H, Bachmann M, Egaña-Ugrinovic G, Sepúlveda-Martínez A. Fetal cardiac dysfunction in pregnancies affected by intrahepatic cholestasis of pregnancy: A cohort study. J Obstet Gynaecol Res. 2022;48(7):1658-67. DOI: https://www.doi.org/10.1111/jog.15283.

Wang J, Lun W, Shi W. Effects of elevated bile acid levels on fetal myocardium in intrahepatic cholestasis of pregnancy, a retrospective study from a neonatal perspective. Clin Res Hepatol Gastroenterol. 2022;46(8):102013. DOI: https://www.doi.org/10.1016/j.clinre.2022.102013.

Sauerbruch T, Hennenberg M, Trebicka J, Beuers U. 107. Bile acids, liver cirrhosis, and extrahepatic vascular dysfunction. Front Physiol. 2021;12:718783. DOI: https://www.doi.org/10.3389/fphys.2021718783

Li J, Wilson A, Kuruba R, Zhang Q, Gao X, He F, et al. FXR-mediated regulation of eNOS expression in vascular endothelial cells. Cardiovasc Res. 2008;77(1):169-77. DOI: https://www.doi.org/10.1093/cvr/cvm016

Gazawi H, Ljubuncic P, Cogan U, Hochgraff E, Ben-Shachar D, Bomzon A. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem Pharmacol. 2000;59(12):1623-8. DOI: https://www.doi.org/10.1016/s0006-2952(00)00259-8

Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogJansis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000;118(5):937-44. DOI: https://www.doi.org/10.1016/s0016-5085(00)70180-6

Dourakis SP, Geladari E, Geladari C, Vallianou N. Cirrhotic cardiomyopathy: the interplay between liver and cardiac muscle. How does the cardiovascular system react when the liver is diseased? Curr Cardiol Rev. 2021;17(1):78-84. DOI: https://www.doi.org/10.2174/1573403X15666190509084519

Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules. 2018;8(4):159. DOI: https://www.doi.org/10.3390/biom8040159

Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia reperfusion injury (Review). Int J Mol Med. 2021;47(2):485-99. DOI: https://www.doi.org/10.3892/ijmm.20204823

Adeyemi O, Alvarez-Laviada A, Schultz F, Ibrahim E, Trauner M, Williamson C, et al. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis. PLoS One. 2017;12(9):e0183167. DOI: https://www.doi.org/10.1371/journal.pone.0183167

Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, März W, Pilz S. Vitamin D and cardiovascular disease: an updated narrative review. Int J Mol Sci. 2021;22(6):2896. DOI: https://www.doi.org/10.3390/ijms22062896

Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J. 2022;74(1):87. DOI: https://www.doi.org/10.1186/s43044-022-00325-2

Published

2025-03-09

How to Cite

1.
Piñol Jimènez FN, Capo de Paz V de los Ángeles, Monteros González T, Larrondo Muguercia H de las M, Clavería Centurión NE. Bile acids and the heart: current evidence. Rev. cuba. cardiol. cir. cardiovasc. [Internet]. 2025 Mar. 9 [cited 2025 Mar. 9];31:e_2333. Available from: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/2333

Issue

Section

Review Article