Bile acids and the heart: current evidence
Keywords:
bile acids, heart, sudden deathAbstract
Introduction: New evidence reveals the regulatory actions of bile acids as signaling molecules that benefit the balance of cardiac hemodynamics, but whose cardiotoxic effects, associated with comorbidities, cause arrhythmias, atrioventricular block, cardiac arrest and sudden death.
Objective: To present the molecular foundations that allow bile acids to be recognized as cardiotoxic agents.
Methods: A systematic review was carried out between 1939 and 2023, in PubMed, SciELO, Lilacs and Elservier of the reports about the molecular mechanisms that could constitute the theoretical foundation of the cardiotoxic effects of bile acids on myocytes. Likewise, the imbalance of the microbiota-hepatobiliary-intestinal-brain axis that leads to disorders of cardiac hemodynamics and sudden death.
Results: The molecular mechanisms that could underlie the link between the cardiotoxic effects of bile acids, dysbiosis, disorders of cardiac dynamics and sudden death are described.
Conclusion: The biomolecular foundations that recognize bile acids as cardiotoxic agents are identified and scientifically support the importance of these molecules in the diagnosis, prognosis and therapeutics of sudden death and cardiovascular diseases.
Downloads
References
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553-95. DOI: https://www.doi.org/10.1194/jlr.R049437
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev. 2021;101(2):683-731. DOI: https://www.doi.org/10.1152/physrev.00049.2019
Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci. 2011;4(3):210-8. DOI: https://www.doi.org/10.1111/j.1752-8062.201100272.x
Desai MS, Penny DJ. Bile acids induce arrhythmias: old metabolite, new tricks. Heart. 2013;99(22):1629-30. DOI: https://www.doi.org/10.1136/heartjnl-2013-304546
Yan JJ, Fan HQ, Yang L. Bile acids in arrhythmia. Zhonghua Gan Zang Bing Za Zhi. 2020;28(4):361-4. DOI: https://www.doi.org/10.3760/cma.j.cn501113-20190308-00074
Vasavan T, Deepak S, Jayawardane IA, Lucchini M, Martin C, Geenes V, Yang J, et al. Fetal cardiac dysfunction in intrahepatic cholestasis of pregnancy is associated with elevated serum bile acid concentrations. J Hepatol. 2021;74(5):1087-96. DOI: https://www.doi.org/10.1016/j.jhep.202011038
Guizoni DM, Vettorazzi JF, Carneiro EM, Davel AP. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids. Nitric Oxide. 2020;94:48-53. DOI: https://www.doi.org/10.1016/j.niox.201910.008
Joyce SA, Gahan CG. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig Dis. 2017;35(3):169-77. DOI: https://www.doi.org/10.1159/000450907
Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, et al. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases. 2021;9(2):308-20. DOI: https://www.doi.org/10.12998/wjcc.v9.i2.308
Desai MS, Mathur B, Eblimit Z, Vasquez H, Taegtmeyer H, Karpen SJ, et al. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology. 2017;65(1):189-201. DOI: https://www.doi.org/10.1002/hep.28890
Mamic P, Chaikijurajai T, Tang WHW. Gut microbiome-a potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review. J Mol Cell Cardiol. 2021;152:105-117. DOI: https://www.doi.org/10.1016/j.yjmcc.202012001
Piñol Jiménez FN, Capó de Paz VA, Ruiz Torres JF, Martínez Alfonso MA, Arencibia Flores LG, García Santos RO, et al. Ácidos biliares. Evidencias actuales. La Habana: Editorial Ciencias Médicas; 2023. Disponible en: http://www.bvscuba.sld.cu/libro/ácidos-biliares-evidencias-actuales/
Vítek L. Bile acids in the treatment of cardiometabolic diseases. Ann Hepatol. 2017;16 (sup)1:S43-52. DOI: https://www.doi.org/10.5604/01.3001.0010.5496
Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020;2020:5394096. DOI: https://www.doi.org/10.1155/2020/5394096
Nitsa A, Toutouza M, Machairas N, Mariolis A, Philippou A, Koutsilieris M. Vitamin D in cardiovascular disease. In Vivo. 2018.;32(5):977-81. DOI: https://www.doi.org/10.21873/invivo.11338
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, et al. Metabolite G-protein coupled receptors in cardio-metabolic diseases. Cells. 2021;10(12):3347. DOI: https://www.doi.org/10.3390/cells10123347
Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta. 2013;1831(1):203-12. DOI: https://www.doi.org/10.1016/j.bbalip.201206.006
Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, et al. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 2018;50(1):1-9. DOI: https://www.doi.org/10.1152/physiolgenomics.00062.2017
Szteyn K, Singh H. BKCa channels as targets for cardioprotection. Antioxidants (Basel). 2020;9(8):760. DOI: https://www.doi.org/10.3390/antiox9080760
Chen Y, Zhou MM, Gao ZJ, He YL. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases. 2021;9(2):308-20. DOI: https://www.doi.org/10.12998/wjcc.v9.i2.308
Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, et al. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res. 2018;114(10):1335-49. DOI: https://www.doi.org/10.1093/cvr/cvy093
Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, Adorini L, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462. DOI: https://www.doi.org/10.1111/1755-5922.12462
Di Lorenzo A. Sphingosine-1-phosphate receptor-1 (S1PR1) signalling: the homeostatic pathway of the heart. Cardiovasc Res. 2021;117(2):357-9. DOI: https://www.doi.org/10.1093/cvr/cvaa224
Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C. Heart and bile acids–clinical consequences of altered bile acid metabolism. BBA- 1864. 2018;1345-55. DOI: https://www.doi.org/10.1016/j.bbadis.201712.039
Pironi L, Sasdelli AS. Intestinal failure-associated liver disease. Clin Liver Dis. 2019;23(2):279-91. DOI: https://www.doi.org/10.1016/j.cld.2018.12.009
Bauer M. The liver-gut-axis: initiator and responder to sepsis. Curr Opin Crit Care. 2022;28(2):216-20. DOI: https://www.doi.org/10.1097/MCC.0000000000000921
Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M. Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev. 2020:5394096. DOI: https://www.doi.org/10.1155/2020/5394096
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent advances in microbiota-associated metabolites in heart failure. Biomedicines. 2023;11(8):2313. DOI: https://www.doi.org/10.3390/biomedicines11082313
Corriero A, Gadaleta RM, Puntillo F, Inchingolo F, Moschetta A, Brienza N. The central role of the gut in intensive care. Crit Care. 2022;26(1):379. DOI: https://www.doi.org/10.1186/s13054-022-04259-8
Wiese S, Danielsen KV, Busk T, Hove JD, Ytting H, Hansen SH, et al. Altered serum bile acid composition is associated with cardiac dysfunction in cirrhosis. Aliment Pharmacol Ther. 2023;58(4):453-62. DOI: https://www.doi.org/10.1111/apt.17533
Pilipović A, Mitrović D, Obradović S, Poša M. Docking-based analysis and modeling of the activity of bile acids and their synthetic analogues on large conductance Ca2+ activated K channels in smooth muscle cells. Eur Rev Med Pharmacol Sci. 2021;25(23):7501-07. DOI: https://www.doi.org/10.26355/eurrev_202112_27449
Gao J, Yuan G, Xu Z, Lan L, Xin W. Chenodeoxycholic and deoxycholic acids induced positive inotropic and negative chronotropic effects on rat heart. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(4):765-73. DOI: https://www.doiorg/10.1007/s00210-020-01962-7
Shi M, Wei J, Yuan H, Li Y, Guo Z. The role of the gut microbiota and bile acids in heart failure: A review. Medicine (Baltimore). 2023;102(45):e35795. DOI: https://www.doiorg/10.1097/MD.0000000000035795
Ohlrogge AH, Brederecke J, Ojeda FM, Pecha S, Börschel CS, Conradi L, et al. The relationship between vitamin D and postoperative atrial fibrillation: a prospective cohort study. Front Nutr. 2022;9:851005. DOI: https://www.doi.org/10.3389/fnut.2022851005
Dziedzic EA, Gąsior JS, Tuzimek A, Dąbrowski M, Jankowski P. The association between serum vitamin D concentration and new inflammatory biomarkers-systemic inflammatory index (SII) and systemic inflammatory response (SIRI)-in patients with ischemic heart disease. Nutrients. 2022;14(19):4212. DOI: https://www.doi.org/10.3390/nu14194212
Barsan M, Brata AM, Ismaiel A, Dumitrascu DI, Badulescu AV, Duse TA, et al. The pathogenesis of cardiac arrhythmias in vitamin D deficiency. Biomedicines. 2022;10(6):1239. DOI: https://www.doi.org/10.3390/biomedicines10061239
Rodríguez M, Bombin M, Ahumada H, Bachmann M, Egaña-Ugrinovic G, Sepúlveda-Martínez A. Fetal cardiac dysfunction in pregnancies affected by intrahepatic cholestasis of pregnancy: A cohort study. J Obstet Gynaecol Res. 2022;48(7):1658-67. DOI: https://www.doi.org/10.1111/jog.15283.
Wang J, Lun W, Shi W. Effects of elevated bile acid levels on fetal myocardium in intrahepatic cholestasis of pregnancy, a retrospective study from a neonatal perspective. Clin Res Hepatol Gastroenterol. 2022;46(8):102013. DOI: https://www.doi.org/10.1016/j.clinre.2022.102013.
Sauerbruch T, Hennenberg M, Trebicka J, Beuers U. 107. Bile acids, liver cirrhosis, and extrahepatic vascular dysfunction. Front Physiol. 2021;12:718783. DOI: https://www.doi.org/10.3389/fphys.2021718783
Li J, Wilson A, Kuruba R, Zhang Q, Gao X, He F, et al. FXR-mediated regulation of eNOS expression in vascular endothelial cells. Cardiovasc Res. 2008;77(1):169-77. DOI: https://www.doi.org/10.1093/cvr/cvm016
Gazawi H, Ljubuncic P, Cogan U, Hochgraff E, Ben-Shachar D, Bomzon A. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem Pharmacol. 2000;59(12):1623-8. DOI: https://www.doi.org/10.1016/s0006-2952(00)00259-8
Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogJansis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000;118(5):937-44. DOI: https://www.doi.org/10.1016/s0016-5085(00)70180-6
Dourakis SP, Geladari E, Geladari C, Vallianou N. Cirrhotic cardiomyopathy: the interplay between liver and cardiac muscle. How does the cardiovascular system react when the liver is diseased? Curr Cardiol Rev. 2021;17(1):78-84. DOI: https://www.doi.org/10.2174/1573403X15666190509084519
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules. 2018;8(4):159. DOI: https://www.doi.org/10.3390/biom8040159
Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia reperfusion injury (Review). Int J Mol Med. 2021;47(2):485-99. DOI: https://www.doi.org/10.3892/ijmm.20204823
Adeyemi O, Alvarez-Laviada A, Schultz F, Ibrahim E, Trauner M, Williamson C, et al. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis. PLoS One. 2017;12(9):e0183167. DOI: https://www.doi.org/10.1371/journal.pone.0183167
Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, März W, Pilz S. Vitamin D and cardiovascular disease: an updated narrative review. Int J Mol Sci. 2021;22(6):2896. DOI: https://www.doi.org/10.3390/ijms22062896
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J. 2022;74(1):87. DOI: https://www.doi.org/10.1186/s43044-022-00325-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Felipe Neri Piñol Jimènez, Virginia de los Ángeles Capo de Paz, Teresita Monteros González, Hilev de las Mercedes Larrondo Muguercia, Néstor Emilio Clavería Centurión

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Attribution-NonCommercial 4.0 Internacional (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. o admite fines comerciales. Permite copiar, distribuir e incluir el artículo en un trabajo colectivo (por ejemplo, una antología), siempre y cuando no exista una finalidad comercial, no se altere ni modifique el artículo y se cite apropiadamente el trabajo original. El Comité Editorial se reserva el derecho de introducir modificaciones de estilo y/o acotar los textos que lo precisen, comprometiéndose a respectar el contenido original.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).